print(d)

3D Printing made easy

Adam Tremonte, Andrew Thomas, Emily Huynh, and Patrick Dixon

CHANGE HISTORY

Print(d) Inc.

VERSION SUMMARY AUTHOR :
0.1 | Initial Draft | All | 02/05/2017
0.2 Added project description and requirements All 02/09/2017
0.3 Diagrams All 02/23/2017
0.4 Activity Diagrams All 02/28/2017
1.0 First Official version (Requirements) All 03/02/2017
1.1 Adding sequence diagrams with descriptions, Adam, Andrew, | 03/29/2017
adding descriptions to other diagrams, and and Patrick
adding detailed class diagram.
1.2 Adding more class diagrams, adding All 03/30/2017
descriptions
1.3 Added more sequence diagram descriptions Emily 04/02/2017
1.4 Final All 04/28/2017

TABLE OF CONTENTS

CHANGE HISTORY
TABLE OF CONTENTS

1. INTRODUCTION
1.1 Document Purpose
1.2 Scope
1.3 Definitions

2. PROJECT DESCRIPTION

2.1 Product Purpose

2.2 Product Features
2.2.1 Android Application
2.2.2 Thingiverse API
2.2.3 OctoPrint Server

2.3 Constraints

2.4 Assumptions & Dependencies

3. FUNCTIONAL REQUIREMENTS
3.1 User Account Management
3.2 Setting up printer profile within app
3.3 Pulling collections from Thingiverse
3.4 Remote server (Heroku)
3.5 Pushing to OctoPrint Server
3.6 Filament Tracking
3.7 Alignment / Bed Level
3.8 Error Handling

4. NON-FUNCTIONAL REQUIREMENTS
4.1 Hardware Requirements
4.2 Location Requirements
4.3 Service Requirements
4.4 Usability Requirements
4.5 APl Requirements
4.6 Backend Server Requirements

5. UML DIAGRAMS
5.1 Use Case Diagram
5.2 Class Diagram
5.2.1 Main Class Diagram
5.2.1.1 Adapter Namespace

Print(d) Inc.

O 0O O VO OV O O 00 0 0 N N NN o~ O~ O~ O O~ O O O ~ B b b N =

O

_ = A
N - = O O

5.2.1.2 Model Namespace

5.2.1.3 View Namespace

5.2.1.4 ViewModel Namespace
5.2.1.5 Service Namespace

5.2.1.6 Application Class
5.2.2 Server Class Diagram

5.3 Activity Diagrams

5.3.1 Login

5.3.2 Create Account
5.3.3 Edit Account
5.3.4 Bed Levelling
5.3.5 Printing

5.4 Sequence Diagrams

5.4.1 Print

5.4.2 View Print Status
5.4.3 Create Account
5.4.4 Edit Account
5.4.5 Bed Levelling
5.4.6 Server Call

6. APPLICATION SCREEN MOCKUPS

Print(d) Inc.

13
16
18
19
20
21
22
22
23
24
25
26
27
27
28
29
30
31
32

33

Print(d) Inc.

1. INTRODUCTION

1.1 Document Purpose

The purpose of this document is to define the formal requirements of the Print(d) application. It
outlines the functional and nonfunctional requirements along with the intended features of the
application.

1.2 Scope

This project will consist of an Android application that integrates Thingiverse, OctoPrint, and a
slicing server with a user-friendly interface. Modules include the slicing server, Thingiverse
API, OctoPrint API, and printer configurations.

In addition to the application, a backend server will be created to allow users to convert digital
models to a file format their printer can understand.

1.3 Definitions

e 3D Printing - A manufacturing process known as Additive Manufacturing, where parts
are fabricated through building layer on layer.

e 3D Printer - A machine that can extrude material in successive layers to produce a part
from a digital model.

e API (Application Program Interface) - a publicly available interface that provides
developers with programmatic access to a proprietary software application.

e Bed - The bottom plane onto which the 3D printer extrudes filament.

e Extruder - The “hot end” of the printer. A nozzle that reaches high heat to melt filament
and position it to form a model.

e FDM (Fused Deposition Modeling) - A type of Additive Manufacturing commonly used
for many commercially available 3D printers.

e Filament - The material used to print with. Usually a roll of 1.75mm PLA plastic.
e Gcode - The file type used by 3D printers.
e Model - The part that is to be printed.

e OctoPrint - An open source, internet connected controller for most models of 3D
printers. Typically run on a Raspberry Pi or other hobbyist cheap computer.

Print(d) Inc.

e Raspberry Pi - A small, cost effective hobbyist computer usually used for standalone
projects, such as controlling an OctoPrint server.

e Slicing Software - A program designed to take a STL file model and convert it into
Gcode that a 3D printer can read.

e Thingiverse - A website, created by MakerBot Industries, designed to be a place for
people to upload and share models designed to be 3D printed.

Print(d) Inc.

2. PROJECT DESCRIPTION

2.1 Product Purpose

We’ve noticed how difficult it can be to get into 3D printing, so we are designing a better, more
user-friendly approach for consumers to be able to learn 3D printing.

Print(d) will allow users to configure their printer and print custom models without ever having
to interact with gritty printer details or modeling and slicing software. The software interface will
help walk users through previously tedious tasks such as bed calibration and model slicing, all
within one centralized space.

2.2 Product Features
2.2.1 Android Application

We will develop a mobile application that connects all of the core functionality. The application
will be connected to the user’s Print(d) and Thingiverse accounts. Once logged in, the user will
be able to select 3D models from Thingiverse and send it a local OctoPrint server for 3D
printing.

2.2.2 Thingiverse API

Our mobile application will connect the user’s Thingiverse account with their Print(d) account.
The user will then be able to pull Thingiverse collections to select for printing.

2.2.3 OctoPrint Server

After the model has been selected, the user will use OctoPrint to interface with the desired 3D
printer. We will provide basic instructions for the user to set up an OctoPrint server (if it is not
already set up) on a Raspberry Pi that is connected to the printer. Once connected, OctoPrint
will slice and instruct the printer to print the selected part.

2.3 Constraints

e Must be on same wifi network as the Raspberry Pi.
e Constrained to just Thingiverse, can't use similar sites.

2.4 Assumptions & Dependencies

e Thingiverse and OctoPrint APIs
e The user’s devices are wifi enabled and are connected to the internet
e Heroku online

3. FUNCTIONAL REQUIREMENTS

3.1 User Account Management

Print(d) Inc.

Account Creation High
Login High
Logout Low
Delete Account Low

3.2 Setting up printer profile within app

Build Volume High
Make/Model High
Heated Bed checkbox High

3.3 Pulling collections from Thingiverse

Thingiverse User Authentication High
Collection Tracking High
Ability to retrieve a model (.stl) file from a user’s collection High

3.4 Remote server (Heroku)

DESCRIPTION PRIORITY
Heroku backend server will be able to receive a .stl file and utilize the Medium
Cura Engine to slice the file into a .gcode file

Server will be able to authenticate users and manage account creation Medium

Print(d) Inc.

3.5 Pushing to OctoPrint Server

DESCRIPTION PRIORITY
Connect mobile app to OctoPrint API High
Send sliced model to OctoPrint server High

3.6 Filament Tracking

DESCRIPTION PRIORITY
Total filament input and storage Low
Track filament per job Low

3.7 Alignment / Bed Level

DESCRIPTION PRIORITY

Direct control of 3D Printer over OctoPrint to move extruder head to Medium
necessary positions

Companion interface to walk users through the process Medium

3.8 Error Handling

DESCRIPTION PRIORITY

Separate error messages for each step Low

Print(d) Inc.

4. NON-FUNCTIONAL REQUIREMENTS

4.1 Hardware Requirements

The user must have a 3D printer

The user must have an OctoPrint server connected to their 3D printer
OctoPrint must be connected to the internet

The user must have an Android device

4.2 Location Requirements

e The user must be connected to the same wifi network as the desired OctoPrint server
4.3 Service Requirements

e The user must have a Thingiverse account
4.4 Usability Requirements

e The Print(d) application must be easy to use for users that have little to no experience
with 3D printing.

4.5 APl Requirements

e Thingiverse API open and available
o Allows users to view their collections
e OctoPrint API allows for direct printer control and pushing Gcode files

4.6 Backend Server Requirements

e The server will be able to communicate through an API to the Android application
e The server will be able to store user data

Print(d) Inc.

5. UML DIAGRAMS

5.1 Use Case Diagram

Printd

i
R G

User wextends = Sa
Configure Printer

«include= - Slice Model

'- <<inC|Ude>>
-------- -

\

tnan

Thingiverse

it
\

Choose Model

\\\%

Octoprint

This is a basic overview of how printd will work. The user will just communicate with the app
for creating an account, editing an account, printing, and bed leveling. Printd then talks to the
appropriate service to be able to satisfy that request. All account management tasks will be
handled by the Heroku server. The bed leveling and slicing will be handled by the OctoPrint
API. The data loaded from Thingiverse will be handled by the Thingiverse API.

10

Print(d) Inc.

5.2 Class Diagram

5.2.1 Main Class Diagram

The class diagram can be divided into six main parts: five namespaces, and the application
class. The MVVM framework being used to develop Print(d) has led to a multitude of classes,
but these classes allow for clean code that is succinct and well organized. The five
namespaces, starting from the top left and ending on the bottom right, are as follows: Adapter,
Model, View, ViewModel, and Service. Each namespace is enlarged in the following
subsections.

To view the class diagram in full size, please visit this link to our website:
https://print-d.github.io/images/class diagram.png

11

https://print-d.github.io/images/class_diagram.png

5.2.1.1 Adapter Namespace

Print(d) Inc.

adapter

-
~binding : ite mCollectionBinding

+ThingiverseCollectionViewHolder(binding : ltemCallectionBinding)
~bindCollection{collection : ThingiverseCollection) : void

dapter

“Thingh -
<<Property> > ~collections : ThingiverseCollection

+ThingiverseCollectionAdapter()

holder : ThingiverseColl

+ThingiverseCollectionAdapter(collecticns : List<ThingiverseCollection>)
+onCre ateViewHolder(parent : ViewGroup, viewType : int) - ThingiverseCollectionViewHolder

position - int) : void

+getiemCount(: int

Thingivers eThingsViewHolder
~binding : temThingginding
+ThingiverseT! itemT!
~bindCollectionThingsicollectionThing ThingiverseCollectionThing) : void

Thingivers eFilesViewHolder

~binding : ltemFileBinding

bind

+Thing
~bindFiles(thingFile : ThingiverseThingFile) : void

g

Thingivers

<<Property> > -collectionFiles : ThingiverseThingFile

+ThingiverseFilesAdapter(

+ThingiverseFilesAdapter(collectionFiles : List<ThingiverseThingFile>)

+onCreateViewHolder(parent - ViewGroup, viewType int) - Thingiverse FilesViewHol der|
T

g
+getitemCounty : int

, position : int) : voi

Thingivers eThingsAdapter

<<Property>> - collectionThings - Thingiverse CollectionThing

|+ Thingiver seThingsAdapter()

+ThingiverseThings Adapter{collectionThings - List<ThingiverseCollectionThing>)
+onCreateViewHolder(parent - ViewGroup, viewType - int) - Thingiverse ThingsViewHolder
+onBindViewHol derfholder - ThingiverseThingsViewHolder, position : int) : void

|+ getitem Countg : int

The Adapter namespace is utilized when RecyclerViews are needed within an Activity. A pair

of classes, namely a ViewHolder and an Adapter, are used in conjunction to ensure each

RecyclerView is appropriately filled with correct information and uses the correct viewmodels.

12

Print(d) Inc.

5.2.1.2 Model Namespace

(Model namespace continuation and description are on the next page)

13

B AR i ik ok

Print(d) Inc.

The Model namespace is used for data classes to store data from APIs or within the
application in a logical, organized format. Viewmodels interact with data through these Model
classes, and Services return data organized into these Model structures.

15

Print(d) Inc.

5.2.1.3 View Namespace

1'|||nls : List<Thingiverse CollectionThing=) s void

<y ew) : void

newintent{context - Context) © Inte

16

Print(d) Inc.

The View namespace is where all Activities within the application are defined. These Activities
are very bare, and are merely vessels to convey data to the user - business logic is conducted
within the ViewModel associated with the Activity.

17

Print(d) Inc.

5.2.1.4 ViewModel Namespace

Each Activity has an associated ViewModel. These ViewModels contain the business logic of
the application, and glue the Models to the View so the user can see data. Each ViewModel
inherits from the base ViewModel interface, as seen in the diagram.

18

Print(d) Inc.

5.2.1.5 Service Namespace

JothioghvaehutiSeniy, |

The Service namespace defines the external communication routes with APIs. Here,
Generators and Interfaces are defined that the Retrofit library utilizes to create seamless

interfaces that can be used throughout the application by obtaining them through the
PrintdApplication Class.

19

Print(d) Inc.

5.2.1.6 Application Class

PrintdAp plication
< <Property>> -thingiverseService : ThingiverseService
< <Property>> -thingiverse AuthService : ThingiverseAuthService
<<Property>> -octoprintService : OctoprintService A

+geticontext : Context) : PrintdApplication
+defaultSubscribeScheduler() : Scheduler

T

The Application Class is one of the most important classes in the application, and as such is
not part of any of the namespaces. In it, other classes may access variables that are
application wide, such as the Retrofit services that should only be defined once.

20

5.2.2 Server Class Diagram

Print(d) Inc.

Sarver

-Connection

+getPrinterSettings() ; void
+updatePrinterSettings() : woid
+addPrinte rSettings() : void
+removePrinter Settings() © void
+getPrinterProfile() : void

+u pdatePrinterProfile() : void
+addPrinterProfile() : void
+addUser(): void
+updateUser) ; void
+removelser) : void
+zendPostConfirmation() : void
+handleServerCalljcall) @ void

The Heroku server has its own class diagram because it operates separately from the main
application. The Heroku app is very basic, so will only have one class called Server. The
connection with the database is stored in a Connection object. There is a handler method for
server calls, which will then call the appropriate method depending on which server call is

made. The actual database will be the Postgres database used with Heroku.

21

Print(d) Inc.

5.3 Activity Diagrams

5.3.1 Login

®
!

[User enters username and password]<—_
|Validate credentials I Reject

Accept

®©

This is a diagram for a generic login activity. The user needs to enter their username and
password and hit the login button. We will also have the option to remember their login info
and log them in automatically when they launch the app. This could be a security issue so it is
only recommended if the user has a passcode on their phone.

22

Print(d) Inc.

5.3.2 Create Account

®
V

[User enters username and password]<—_

[Validate unique credentials] Reject
Accept
[Obtain API key for user J
[Authorize Thingiverse account]
Configure printer |1ow?l
>, Yes JConﬁgure printer seltings]
Later J/\ J

@<

This is the activity diagram for creating an account. After the user creates a unique username
and sets a password, they will be prompted to link their Thingiverse account. They are then
presented with the option to configure their printer settings now or later. While it isn’t
necessary to configure the printer settings right away it is recommended.

23

Print(d) Inc.

5.3.3 Edit Account

e e m?

,{Com‘lgure printer sel‘llngs] @@

l l Enter password
[Print dEmensions] [Type of plastic in ﬁlament}
l Confirm account deletion

Change password
Enter current password

Enter new password

l Confirm new password

Nozzle Diameter

Yes

Continue configuring?

The activity for editing their account is pretty standard. They can do basic account
management stuff like change their password or delete their account. The important part of this
activity is that they can configure their printer settings here. This lets them put their printer
model in, size of the bed, and type of filament. Ideally we will have a database full of printer
settings created by users. This way new users can just select which type of printer they have
and have all of the settings loaded in.

24

Print(d) Inc.

5.3.4 Bed Levelling

L i
[Enter bed leveling walkthrough]

L

[Bed leveling complete ?J(—_

MNo

fes

Having app-assisted bed leveling is pretty straightforward on the technical side. It is mostly just
an instructional walkthrough on how to level the bed. The process is very tedious and this
would help alleviate that.

25

Print(d) Inc.
5.3.5 Printing

| User initiates Print '

[Disptay User's Thingiverse collection)

Choose model

[Dispfay progress barJ

l Download model l
[Send model to slicing sen.rer] lBegin printingl Quit

Error in printing

Successful slicing

(Send files to 0ctoprint]

Successful printing

Error in slicing

[Pu sh error notificatio n](—_

[Send user a notification of completed printJ

~®-

This is the main activity diagram as it covers printing. This highlights how much this app
simplifies the process, since the user only has to open the app and choose a model to print.
Since there are a lot of steps it is important to have a progress bar. Once the printer starts
printing the progress bar can be changed to text saying that the print has begun. Since the
printer may be left unattended in another room, the app will send a push notification to the user
once printing has completed. Should the print fail at any point in the process, an error will be
displayed to the user telling them at what step the app failed. There are many things that can
go wrong when printing so it is important to be specific so the user can potentially fix the issue.

26

Print(d) Inc.

5.4 Sequence Diagrams

5.4.1 Print

Main Collections Collection Thing Activity Octoprint Thingiverse
Activity Activity Activity API API
User
1: Press Print
1.1: Login
1.2: Return Login
1.3: Open Collections
1.3.1: Get Collections
1
|
1.3.2: Return Get Collections
13.3: 0 Collecti
penanedan 1.3.3.1: Get Things in Collection
|
T
1.3.3.2: Return Get Things in Collection
1.3.3.3: Open Thing
1.3.3.3.1: GetFiles in Thing
L
|
1.3.3.3.2: Retumn Files in Thing
i 1.3.3.3.3: Select File
1.3.3.3.4: Send file to be printed
1.3.3.3.5: Status Returned
1.3.3.4: Status Returned

1.3.4: Status Returned | f—————————————

1.4: Status Returned r

1.5: Status Returned |
_________ T | |

| I I I Powered By Visual Paradigm Community Edition @

The Print sequence is the main flow of our application. In Print, the user telescopes through
Thingiverse Activities that help them select a particular file to print. Each step of the way, calls
are made to Thingiverse through their API to provide the user with the next step. Once a file is
chosen, it is sent to OctoPrint to be sliced and printed, then the status of the print is returned
to the user.

27

Print(d) Inc.

5.4.2 View Print Status

Android Octoprint
Application AP

User

1: Select view
print status

1.1: Get print
infarmation

1.2: Return print information

1.3: Display print

information opwered By Visual Paradigm Community Edition @

Users will be able to view the status of their print if their printer is currently printing a job. On
the main page, the user will select the ‘View Print Status’ button, which will then send a request
to the Octoprint API and display the relevant information, such as the percent completed, etc.

28

Print(d) Inc.

5.4.3 Create Account
Settings Activity Heroku
Server
User I I
] 1: Clicks Settings
> i
I
1.1: Settings Page Returned I
s S |
27 Input new Username/ Password I
> 2.1: Create Account call |
2.2 Return Success
.{ _______________
|
|
2.3: Login with Credentials [
- 2.4 Return Login Token
2.5 Return Status of Login
e e e s s ey |
P:-c.-q_: ed By Visual Paradigm Community E.:i{i;‘l‘- L

This diagram describes the steps taken by a user to create a new account. After settings is
chosen, the settings activity returns the Settings page for the user to input new credentials.
The settings activity then sends the credentials to the Heroku server. The server checks to
make sure the credentials are valid, then returns a success. The activity continues to login in
with the new credentials.

29

5.4.4 Edit Account

3.1: Ratum Edit Password paga |

4: Input currant and new password

% Salfings Activity Harcku Sarver
Lisar i i
I I
1: Login
= » |
| 1.1: Raquest bgin |
|
: 1.2: Ratum Lagin Token
e msss it T s
13: Ratun status of kgin } |
_______________ [l |
I |
2: Click Seltings PJ' :
| I
2.1: Retum Seflings Page | :
_______________ | I
! I
opt Edit Password) | |
I I
3: Clicks Edil Password Nl" |
|
I
I
I
I

4.3: Ralum changa siatus

4 1: Craale account call

4.2: Ratum sucoess

e e e P e e TR

opt Updata printar ‘_-‘GI[HI'QS’J

T
&: Clicks update printar sattings

5.1: Ralum updale printer page

& Inpul naw =attings

6.1: Updata sallings

6.3: Ratum sucoess

6.2: Ralum sucoass

opt Dalela pc,c,ount)

T: Clicks delela account

T.1: Ask for confirmation

8.1: Dalale account

B.2: Ratum sucoess

Print(d) Inc.

This diagram starts off with a login activity. Then the user selects settings to get to the edit
account page. The three options currently are Edit Password, Update Printer Settings, and
Delete Account. These options will present current settings to allow for updates. Then these

changes are pushed to the Heroku server to update the data there.

30

Print(d) Inc.

5.4.5 Bed Leveling

% Bed Leveling Activity Octoprint API
User

1: Select bed level iz |
1.1: Home all

1.1.1: Move print
head to home location

1.1.2: Status returned

1.1.3: Status returned

2: Adjust
bed screw

3: Confirm bed

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
screw adjustment }
|

3.1: Get printer bed size
3.2: Return printer bed size
<_ _____________ | R e e e e e e e e j;|
|
3.3: Move print head
3.4: Status returned
3.5: Status returned < 777777777777
4: Adjust
bed screw

5: Confirm bed
screw adjustment

5.1: Move print head B

5.2: Status returned
5.3: Status returned [T
[—

6: Adjust
bed screw
7: Confirm bed
screw adjustment

7.1: Move print head

7.2: Status returned 17-‘
<_ ___________

7.3: Status returned

8: Adjust
bed screw

9: Confirm bed
screw adjustment

9.1: Move print head

9.2: Status returned
9.3: Status returned

| Powered By Visual Paradigm Community Lq‘li'\iun @

The bed leveling activity is optional. If the user selects the bed leveling option, the application
will send a request to the OctoPrint APl to move the print head to the home location. Then, the
user will be prompted to adjust the current bed screw. Once confirmed, the app will then get
the printer bed size from the database to calculate the next print head movement. The print
head will move, and the user will be prompted to adjust the next bed screw. This will be
repeated for all bed screws, and then once

31

Print(d) Inc.

5.4.6 Server Call
Main activity % Database
I Server I
| 1
|
1: Generic reguest
g
2: Establish connection
P
2.1: Send back response
.5:% ________________
3: Validate crede ntials
3.1: Send back response
{% ________________
| 4: Create appropriate query
5. Query database
5.1: Send back response
LR e "
6 Send back response I
ST |

Since all of the server calls will be handled the same way, this is a sequence diagram for a
generic server call. The main application sends a request to the Heroku server. The Heroku
server then ensures it has a connection with the Postgres database, validates the user’s
credentials, creates the appropriate query, queries the database, and sends back the
response.

32

6. APPLICATION SCREEN MOCKUPS

Printing Status
V4l 1230

2

Start Print

Thingiverse

Bed Leveling Instructions
vdil1z30

Step 1: Paper Setup

Bed Leveling Option
4N 1230

Bed Leveling

Do you want to level your printer
bed?

YES NO

Start Print

Thingiverse

Thingiverse Collection Viewer
Vil 1230

Thingiverse Collections
SD Card Storage
For Fun
Raspberry Pi
Utilities
Household Items

Robot Stuff

Print(d) Inc.

33

Model Viewer
Y40 1230

Model Viewer H

Top_part.stl

Bottom_part.stl

Printing Status
Y40 1230

Printing Status

Print is 31% complete

Print(d) Inc.

34

